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ABSTRACT

This thesis explores factors that influence traffic accidents at both signaled and non-
signalized intersections in North Carolina. This follows from a recent Masters’ thesis [4]
on bicyclist injury severity at unsignalized intersections in North Carolina. We revisit
the original data for our analysis, increase the number of observations and find that only
three injury’s levels can be correctly classified (83% accuracy rate) using a neural network
machine learning algorithm. With this information, we examine the relation between
Ambulance and Injury levels and study the effect of traffic control (or its absence) on
injury levels. We conclude that there is an increase in odds in the severity of the injury
level in the absence of a traffic control. Further, given the (3) levels of injuries, we find
that Road Speed Limit, Driver’s Estimated Speed Limit, Light Conditions (daylight or
not) and Road Characteristics (curve or straight) are statistically significant factors in a
multinomial logistic regression model.
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Chapter 1 Introduction

1.1 Background and Overview

Developed in 2004, North Carolina established a committee for highway safety to

support a federal-state association plan with a goal of reducing the fatality rate to 1.0

fatalities per 100 million vehicle miles. Just two years later, the revised plan highlighted

14 emphasis areas, and included in this plan was bicycle and pedestrian safety. The

strategic framework implemented resulted in significant progress towards reaching the

vision zero goal. Ten years from the inception of the federal and state safety initiative,

North Carolina’s goal was to decrease the number of fatalities and serious injuries by

about a half, from figures gathered in 2013 by the year 2030. This long range goal

became the mission and vision that motivated stakeholders to activate an vigorous yet

obtainable plan for all transportation users in North Carolina. They defined nine areas of

focus and among them was pedestrians and bicyclist. Through coordination with other

agencies, North Carolinas’ focus area’s help to realize the goal especially with the push for

alternative means of transportation to help reduce the carbon footprint with congestion,

to promote healthier and active lifestyles, and to become more environmentally friend.

Pedestrians traffic and bicycling offer a viable alternative; however, this opportunity also

raised the vulnerability because of the inherent nature of the size, speed, and overall

protection of the pedestrians and cyclists. In some cases, the areas of focus overlapped

due the type of incident, which means that the overall quality of improvement in safety

touches on several focus areas.

From the mandate established in 2004, North Carolina comprised a committee for

highway safety to support a federal-state association plan with a goal of reducing the

fatality rate. Although they reached specific milestones of the plan, they continue to
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seek the zero tolerance by 2030 [9]. Hence the goal of this research is to research past

incidents at both signalized and unsignalized intersection based on the data collected by

their study to determine predictors of future incidents.

The sample studied comprised of data provided by UNC Highway Safety Re-

search Center in Chapel Hill, NC, which include records of bicycle-motor vehicle crashes

from 2007 to 2015 from the various cities and counties across the state. All city and

county police agencies in the state provided the information from their perspective lo-

cations. Each incident represented the information collected by the policing official for

that area. The qualified agent recorded demographics on the bicyclist, the driver, the

direct and indirect influences of the incident to include environmental factors as well as

interviews at the scene of the accident. Because of the statewide mandate to improve the

transportation issue, the highway safety committee set goals and developed initiatives to

accomplish those goals by 2030.

In Chapter 2, we describe some of the variables in the data and their distributions.

In Chapter 3, we describe the different transformations that were applied to some of the

variables, as they are prepared for analysis which took place in Chapter 4. There, we first

introduce the reader to several basic concepts of data analysis. Neural network, binary

logistics and multinomial logistics are the modeling techniques used for our research to

answer the following five (5) questions:

Question n◦ 1. Does the data contain enough information to help predict the need of

an ambulance when a bicycle accident occurs?

Question n◦ 2. Does the data contain enough information to help predict the different

(5) levels of injuries when a bicycle accident occurs?

Question n◦ 3. Do bikers’ injury levels (3) help predict the use of ambulance when

accidents occur?

Question n◦ 4. Does the presence of some traffic control (or the lack thereof) help

explain the (3) levels of injuries of the bikers?

Question n◦ 5. What factors help explain the (3) levels of injuries of the bikers? An-

swers for each question is provide and a model equation with an interpretation is given,

where appropriate. We close our thesis with Chapter 5 where we summarize our finding
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and offer some recommendations.

1.2 Literature Review

While extensive research on bicycle-motor vehicle crash (BMVC) raised awareness, the

need continue preventing bicycle accidents still exist especially with an aggressive ap-

proach to reaching the goal of 0% tolerance and an increase in bicycle presence. Earlier

research has brought about significant changes with incidents with bicycle, and much of

those studies focused on classical techniques which we will also use. Hence, the need

centers on the fact of using more complex tools such as deep learning and boosting tech-

niques or even generative models which can be compared to the logistic regression models

typically explored to give a good base line for the machine learning algorithm. Because

of this, the literature review will explore research on factors associated with bicyclist’s

injury severity. The literature review is also aimed at examining past literature from the

mathematical perspective to provide an insight into how cyclist and transportation re-

search have been affected by the commitment to reduce congestion with recent demands

for alternative modes of transportation.

A summary of existing studies comprise of four areas for severity of bicycle crashes(1)

design;(2) volume as contributing factors;(3) human intervention as a factor and(4) safety

and awareness. The various research areas arise from the data collected which helps rec-

ognize variation for analysis. With the severity of injury from bicycle crashes, researchers

investigated traffic volume and design as well as a socio-economic contributions to acci-

dents. In comparison to the volume collected from other transportation modes, bicycle

data presents challenges especially because of the scarcity. Hence, data collected at-

tempts to use all measures of bicycle exposure. Studies involving different factors in

bicyclist incidents capture bicyclist gender and other demographics, environment, road-

way infrastructure, vehicle types, and even traffic; yet, despite the decline in the number

of incidents over the past 15 years, bicycle incidents still occur [11, 5, 18]. Approximately

1,000 bicyclists are involved in police-reported crashes with motor vehicles. Children and

young adults are the most frequent victims [9].In the current review, over 100 sources
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containing these factors and key terms were investigate as well as provided statistics for

those factors. Intersections are BMVC prone locations [18]. For that reason, the design of

this analysis centers around signalized and unsignalized intersections to build predictive

models.

1.2.1 Design

Crashes occur for a number of reasons. In 2017, Asgarzedeh et al. researched the role

of intersection and street design on severity of bicycle-motor vehicle crashes using ge-

ographical information system (GIS) along with data collected from New York’s police

records on bicycle-motor vehicle crashes (BMVC) accidents. They concluded from the

various environmental variables of the area that non-orthogonal intersections and non-

intersection street segments are more likely to result in a severe injury to bicyclist than

BMVCs at orthogonal intersections [1]. Their study captured street design as it relates

to severity of the BMVC as well as the risk ratios using multivariate log-binomial linear

regression along with log-binomial regression to model the risk ratios. Others researchers

of intersections found that clearance time, bicycle lane exclusivity, and vehicle movement

delay contribute to greater chances of BMVC incidents [6]. Madsen and Lahrman’s study

of the design of intersections and concluded that there should be recessed bicycle track

to minimize BMVS [8]. However, they also found that the various volumes of traffic

made it difficult to determine which design was safest since the number of incidents were

relatively small.

1.2.2 Volume

As innovation progresses toward increase in bicycle traffic concerns that other factors

associated with bicycle accidents also sparked interest, which included volume and speed.

Their study investigated the impact traffic volumes, facility type and land use on cyclist

safety; and develop statistical models to predict the number of cyclist collisions. It is

assumed that more crashes occur in population density areas than in location with lower

population density . Traditional statistics produced by NHTSA provide cyclist fatality

rates by population (per 10,000 residents), but these metrics are not sensitive to the
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amount of time or distance that the cyclist is exposed to vehicular traffic Another study

also found that land mix as little as an increase of 10% at intersections increases the

bicycle traffic by 8%, but without the appropriate interventions results in increase in

cyclist injuries [16].

1.2.3 Human Factor

Although people across ethnic groups, genders, age groups, and even socio-economic

groups are affected by bicycle accidents, those at a lower risk are males where all else

being equal [16] However, with regard to the biker and driver specific data, research on

the amount of time spent on the road, which includes distance, as well as speed, found a

strong correlation of speed and density where electric bicycle were compared to bicycle

[2]. This is particularly important with the increase in electric bicycle usage. Others

also saw a direct correlation between the willingness to commute by bicycle in low-stress

commutes to and from destinations [3]. The concern for safety was a factor even with

regard to the riders age. Schepers et al. investigation of unsignalized intersections found

that employing speed reducing mechanisms along with design changes were most effective

with a clearance between 2 and 5 m is safer than a cycle lane [14]. Hence, when Tang et

al. studied the impact of group behavior on bicycle flow at intersection, it was interesting

to note the negative impact on the bicyclists as well as with traffic flow [17].

1.2.4 Safety and Awareness

From the first BMVC in the United States, which occurred in New York City on May 30th

1896 , the range of accidents at intersections is about 50-64% [7], which they assert are

influenced by unware of surroundings. Others have studied safety and awareness of bicy-

clist travels and found that with increase in safety and awareness the number of incidents

have increased [10]. Jannet et al research found that driver attention focuses mostly on

nearby cars and car within their frontal view and with little regard for peripheral blind

spots, which agreed with their previously informal notions [5].
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1.3 Conclusion

With so many various studies, there is still a need for understanding and improvement.

Bicycling offers an alternative to the issue of traffic congestion as well as other health

benefits. However, when is error, safety should always come first. In addition to the

height use which is not well develop and has limitations, BMVC studies are a valuable

pursuit.
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Chapter 2 Data Exploration

2.1 Basic Definitions

1. Type: Indicates if the data is Numerical or String (text/alphabet/character)

2. Label: Signifies the name or label of the variable. The exact label described in

this column will appear in the tables/ graphs.

3. Values: The Coded value of the variable when indicated.

4. Missing: There could be instances within data that observations are label “n/a”,

“NULL”, “.”.

5. Nominal: A variable can be treated as nominal (or categorical or qualitative)

when its values represent categories with no intrinsic ranking. Names or labels of

the categories e.g. Gender, hair color, location.

6. Ordinal: A variable can be treated as ordinal (or categorical or qualitative) when

its values represent categories with some intrinsic ranking. Order of the categories:

e.g, Levels of injuries, satisfaction.

7. Scale: A variable can be treated as scale (or numerical or quantitative) when its

values represent a meaningful metric. e.g., age in years, and income, test score.

2.2 Data Description

Initially, the data consisted of 66 variables (string, numerical, date) and 8418

observations for each of those variables. It contains variables such as Year of incidents,

Crash date, Bikers Age, Gender, Race, Date (Year, month, day) of crash, Time (hour,
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minute), Location, Street condition, Level of injury (Ambulance required or not, death,

etc.)

See Appendix for details.

2.2.1 Location

The accidents occur throughout the state of North Carolina as shown in Figures 2.1 and

2.2.

Figure 2.1: Location of Yearly Incidents

Figure 2.2: Cluster of Incidents: 2007-2018

There are 296 cities that are recorded from 100 counties. One county (Wake county)

accounted for almost 14% of the incidents in North Carolina of which one city ( Raleigh)

within that county accounted for 790 out of the 1157 values captured.
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Figure 2.3: Count of Incidents by County

2.2.2 Level of injuries

The biker’s injury level (BikeInjury) includes five categories ranging from no injury to

deaths. Table 2.1 describes each category in the order of severity. There are 230 unknown

cases

Category of Injury Description of Injury
No Injury No injury reported

Possible Injury No visible injury, but complaints of pain annotated, or tempo-
rary unconscious experienced.

Evident Injury Apparent injury at the scene, but not killed or disabling

Disabling Injury
Injury, which prevents the person from performing
daily activities for at least one day beyond the day of the
incident

Killed Deaths (occurring within 12 months after the crash)
resulting from injuries sustained from incident

Table 2.1: Bicyclist Injury Levels

Throughout the years (2007-2015) the number of recorded accidents has remained

consistent (about 10-12%) as shown in Table 2.2. About 80% of these accidents show

some evident/possible injuries.

9



Table 2.2: Table of Incidents by Year

As we look at the relation between road condition (1=wet, 0=dry) and injury, we see

from the graph, Figure 2.4 that there is no significant difference between the number of

incidents when the road is wet vs when it is dry.

Figure 2.4: Incidents by road condition

Furthermore, as related to work zone, evidence from graph (Figure 2.5) suggests that

work zone has no bearing on the level of injuries. In fact, that was reported death not

10



in a workzone.

Figure 2.5: Incidents by workzone

Most accidents occur when the drivers’s average speed is its lowest as shown in Figure

2.6.

11



Figure 2.6: Average driver’s speed

Furthermore, most drivers were driving within the speed limit as shown in Table 2.3

Table 2.3: Drivers’ speed vs Actual speed limit
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Most accidents occur during the day as shown in Figure 2.7

Figure 2.7: Light condition during accidents

Most accidents occur with or without evident of injury where there is no traffic control

light or signal as shown in Figure 2.8

Figure 2.8: Accidents reported at signalized or unsignalized intersections
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2.2.3 Substance Involvement

Quite naturally, the data also contains some information on whether or not individuals

were under the influence of some substance. Substances include alcohol, alcohol and

drug, for the biker and the driver. Table 2.4 and Figure 2.9 show that less than 8%

of reported accidents involve some substance use. Moreover, Figure 2.10 indicates that

hit-and-run incidents have no effect on the level of injuries.

Table 2.4: Record of Substance Use

Figure 2.9: Substance use and level of injuries
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Figure 2.10: Hit and run with reported level of injuries

2.2.4 Ambulance

About 68% of the incidents require an ambulance while 32% do not. Table 2.5 shows

such a distribution by levels of injuries.

Table 2.5: Distribution of Ambulance requirement

From Table 2.5 and Figure 2.11 , it appears that there are instances where ambulance

was not required while there is some evident/possible injury even in the case of death

(11 cases).
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Figure 2.11: Ambulance requirement and level of injuries

2.2.5 Biker Age

The data captures the age of the bicyclist in two different ways. One variable

was the numerical age in years which up until 2015, an observation from 2015 forward,

expressed the age as a group as well entries and in some cases so the data was transposed

to the appropriate field. Out of 8418 observations, 124 are recorded as missing. The

mean age recorded is about 32 with 1 infant (0 age) and being 121 individuals being 70

years or older. Details are shown in Figure 2.12 and Table 2.6.

Statistics Values
Mean 32
Median 28
Std. Deviation 17.4
Minimum 0
Maximum 70

Table 2.6: Bikers Age Statistics
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Figure 2.12: Distribution of Bikers Age

2.2.6 Biker’s Race

The data contains the race of the bikers involved in an accident. 55% of them are white,

34.5% are black while the remaining 10% accidents involve other races. Figure 2.13 shows

such distribution.

Figure 2.13: Biker’s Race
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Figure 2.14 shows although most accidents affect all races, Native American are re-

ported to be disproportionately killed even though the account of 1% of the recorded

accidents.

Figure 2.14: Biker’s Race and injury level

2.2.7 Biker’s Gender

Bicyclist’s and Driver’s genders also provide some additional background information

about the individuals that are involved in the accident. There were 116 missing gender

values for the bicyclists compared to the 1138 missing values for the driver. We focus

on bicyclists, as it is the focus of this research. As shown in Table 2.7, most accidents

(85%) involve males.
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Table 2.7: Biker’s Gender

Most recorded bikers injuries span across both genders, in which there is no obvious

relationship.

Figure 2.15: Biker’s Gender with recorded injury levels
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Chapter 3 Data Mining

3.1 Basic definition

1. Binning: a grouping of contiguous values of existing variables into a limited num-

ber of distinct categories

2. Data cleaning: a process of identifying and correcting or even deleting errors and

inconsistencies in a data due to incomplete or inaccurate data entry, which requires

replacement, modification or even deletion of irrelevant data.

3. Dichotomous variable: a variable that contains precisely two distinct values.

4. Nominal Data or nominal scale: the simplest for a scale measure but provides

no quantitative value.

5. Ordinal Data: a data type with a set order or scale to it.

6. Proxy or Proxy variable: a variable that serves as an immeasurable variable

and is itself indirectly relevant.

7. Redundancy: can be data duplication or cross-correlation where two seemingly

unrelated variables have some relation or cause that at one time were independent

of each variable.

3.2 Data preparation

In the original form, the data is not easily recognizable for machine learning which re-

quired recoding of some existing variables and in other cases proxy variables were em-

ployed. However, before an analysis can take place, data cleaning, transformation or
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integration must occur. This process also checks for irregularities, eliminate duplicated

data, detect and correct missing values. In some cases, proxy variable, also called dummy

variables are generated to make for a cleaner analysis. Data mining tools can effectively

create valid and insightful models only when the information provided is free of nui-

sance and noise factors. The first step in the procedure describes each of the variables in

the data set. The description of the variables ensures continuity of understanding. The

original coding represents the data as it was originally presented. The coding employs en-

coding or continuation of categorical data transformed into their numerical counterparts.

The process for encoding is necessary for modeling methods such as linear regression or

bivariate correlation to illustrate a continuous variable. The two main types of encoding

binary or target-based encoding.

Much of the encoding converting the string data to numerical data types pre-

sented a nominal relationship in the table, which meant the various categories of data

had no relationship. From the data collected from a profession agent at the scene of the

incident expertise in the subject matter for each incident, 34 variables were utilized in

the order presented in the data set (see Appendix 5). The data set contained missing

value and where necessary some scaling was necessary for the purpose of this analysis.

There are occasions when it is necessary to reduce the number of categories in an ordinal

or nominal variable by combining (‘collapsing’) them in order to perform a certain type

of analysis.

The initial cleaning resulted in dropping and deleting several variables. Among

them were Object Identification, Biker and driver age group, crash time, crash date, Dis-

tance mile from, NumBikesAI,NumBikesBI, NumBikesCI, NumBikesKI, NumBikesNo,

NumBikesTo, NumBikesUI, RdFrm, OnRoad, TowrdRd. In 2014, data on DistnMiFrm

and FrmRd was captured but for this study, is was deleted; however, the location

3.2.1 Location

Throughout the examination, many of the variables appeared to be redundant and among

the observations, several observations collected information regarding location. The nar-

rative of the city, county, crash location, development, distance mile from, from road, on
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road, region, and toward road variables’ tell the same story as does the latitudinal and

longitudinal. The latitude and the longitude data provided specifics of the accident’s lo-

cation. Since the goal is to use tools like genetic boosting, location data, city and county

variables were considered for location segments analysis.

3.2.2 Level of Injuries

Level of Injury’s observational data was ordinal which allowed the data to be coded based

on rank and order of the injury from 1 to 5. If no injury was collected, the string variable

was converted to a numerical value of 0. The next value was possible injury which was

assigned 2 in rank. The following value, evident injury, was 3 in the rank followed by

disabling injury assigned 4. The last of the order values was encoded a 5 for deaths. The

level of injuries was further delineated into 3 bins.

3.2.3 Substance Involvement

Variables Biker and driver alcohol only as well as alcohol and drug involvement along

with crash alcohol variables were merged into a single variable category called substance

use/involvement. If either the biker or the driver had a yes value regardless of impairment,

the value of the substance use variable returned a yes value. It appears that the predefined

columns were further delineated to reflect a more comprehensive extent of the information

captured. The number of yes and no were considered, and the dominant category received

the value associated with the category. The missing or null values were calculated also

based on the majority category as well. Given the ratio of no to yes, we extend that

ratio to randomly impugned values to the null and encoded to keep the same percentage

count. Rather than employing the mean (or median) of a certain attribute calculated by

looking at all the rows in a database, we limited the calculations to the relevant yes or

no response to make the value more relevant to the row in review.The goal was to savage

all of the values. Because of the swap, the data was updated to reflect the transposed

information. After cleaning the initial values, the encoding reflected 0s for no values and

1s for yes values which in turn transformed this variable to a numerical nominal variable.
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3.2.4 Ambulance

As a string variable, recoding the same variable, ambulance required variable consisted

of no and yes responses. Hence, this variable transformed into 0s and 1s encoding where

0 represented the no responses and 1 represented the yes. Changing the coding to binary

coding makes for decent machine learning as it aids in processing time and accuracy.

3.2.5 Biker Age

Biker Age naturally correlate with Biker Age Group which is another variable in the

data. So, we dropped Biker Age group and kept Biker Age which was a numerical and

scaled value. Additionally, 124 of the observations are unknown and we used a global

constant "." to handle this missing value. There are also some rows that had special

operators, such as 70+ that triggered a string type. To handle these cases, the data was

grouped and tagged as 70 years in age in order to treat the data as a numerical type.

During the examination of the data, it was observed that beginning 2015, the age and

age group were swapped, so to keep the data consistent, the two values were transposed

for the analysis, which further substantiated the need to evaluate only the one variable.

with the changes implemented, the age value code was the numerical age of the biker.

3.2.6 Biker’s Race

At first, the biker’s race consisted of 7 different race groups, which captured the unknown

values as well. Proxy variables were created for each trait and then encoded with a 1

if the attribute was present for that "dummy variable" and all other characteristics was

encoded as a 0. Each attribute now reflected a numerical type with a nominal value of 1

or 0. With regard to the various changes in this variables, we deleted this variable as a

factor.

3.2.7 Biker Gender

Gender is treated as a dichotomous variable, because at the time of the survey, only two

distinct choices were presented. Changing the values from a string type to a numerical
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type along with nominal values of 1 or 0, made for easier learning environment. Also

with this variable, we deleted this variable.

3.2.8 Crash Group and Crash Type

Data collected also included crash group and crash type which were identified by the

professional agent at the scene of the incident. The type of accident help explain the

events that led up to the incident. Crash group centralizes the various types of crashes.
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Chapter 4 Data Modeling

Predictive analytics generally seek to extract information from the raw data in order

to predict trends or indicate certain patterns of behavior. Here we rely on standard

statistical data modeling such as logistic regression and a well-known machine learning

technique called neural network. Fundamentally, we are trying to capture the relation-

ships between each of the responses Injury and Ambulance, and several predictors such

as Drivers speed, Road condition, traffic control, age, gender, etc. The events recorded in

the data as they occurred a few years ago (up to 2015) are analyzed to help predict when

we outcomes such as death or injuries for a biker that is involved in a road accident. We

begin by introducing the reader to some common statistics, models, and technical terms.

4.1 Basic Statistics and Machine Learning

4.1.1 Level of significance

Also known as alpha level, this value is used as a probability cutoff for making decisions

about the null hypothesis. Its value represents the probability we are willing to place on

our test for making an incorrect decision in regards to rejecting the null hypothesis. In

other words, it is the level of risk we are willing to take as we reject a possibly correct

hypothesis. For example, a significance level of 0.05 indicates a 5% risk of concluding

there is a statistically significant result or difference when there is none.

4.1.2 P-value and Confidence Interval

P-values (labelled Sig., in SPSS) are the probability of obtaining an effect or a rela-

tionship at least as extreme as the one in the sample data, as we assume the truth of the
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null hypothesis. When a p-value is less than or equal to the significance level (typically

0.05), we reject the null hypothesis.

The range of values, for which the p-value exceeds a specified alpha level is called con-

fidence interval. In other words, this interval gives a range of values within which lies a

true (population) parameter. So, with an estimated parameter at α = 0.05, a confidence

interval indicates that, with repeated samplings (identical studies in all respects except

for random error), we are “confident” that, in spite of margin-of-error (or deviations),

95% of the parameter estimates will lie within this interval. With the margin-of-error we

can state that the interval includes the true population parameter.

4.1.3 Correlation

A simple correlation measures the relationship between two (ideally normally distributed)

variables. For our thesis we used Pearson’s r which measures a linear relationship (or

association) between two continuous (numeric) variables without taking into account

other variables. For each pair of variables (Xi, Xj) Pearson’s correlation coefficient is

computed using

r =

n∑
i=1

(x− xi)(y − yi)√
n∑
i=1

(x− xi)2
n∑
i=1

(y − yi)2
.

Its value range between −1 and 1 and |r| ∼ 1 indicates a strong dependence or

correlation and |r| ∼ 0 indicates a strong independence between the variables.

The objective of any data analysis is to extract information (or accurate estimation)

from the original (raw) data. Typically, we seek to determine whether or not there is

statistical relationship between a response variable (Y ) and explanatory variables (Xi).

One way to answer this question is to use some regression analysis in order to model its

relationship. By modeling we try to predict the outcome (Y ) based on values of a set

of predictor variables (Xi). There are several types of regression analysis and each type

of the regression model depends on the type of the distribution of Y . They are often

used to assess the impact of multiple variables (a.k.a. covariates and factors) in the same

model. Here, we focus on two of these which we define next.
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4.1.4 Linear regression

This is an extension of the simple correlation. In regression, one or more variables Xi

(predictors or factors or independent variables or inputs ) are used to predict an outcome

Yi (response or target or criterion or dependent variable or output ). In practice, a linear

regression model or equation returns estimates of the coefficients of a linear equation

that involves one or more independent variables that best predict the values of an ouput

or the dependent variable which must be quantitative continuous or scale. It is often

written as

E(Yi) = β0 + βXi or Yi = β0 + βXi + εi

for each i observation or data point with errors εi.

Regression coefficients or coefficient estimates βi represent the mean change in the

response variable for one unit of change in the predictor variable while holding other

predictors in the model constant.

The p-value for each term tests the null hypothesis that the coefficient is equal to zero

(no effect). Thus, a low p-value (< 0.05) indicates that we can reject the null hypothesis,

in which case the corresponding predictor is likely to be a meaningful addition (or is

statistically significant) to your model. Likewise, a larger (insignificant) p-value suggests

that changes in the predictor are not associated with (or do not help explain) changes in

the response. Thus, for our analysis, we use the coefficient p-values to determine which

variables are useful for our final model.

As it is true for any model, part of the process involves checking to make sure that

the data we want to analyze can actually be done using the chosen model. For a linear

model it is required that, for each value of the independent variable, the distribution of

the dependent variable must be normal. Typically, we plot the errors (residuals) to see

if they follow a normal distribution. A QQ- plot is an example of such a residual plot

that can be used to reveal biased results more effectively than a simple computation.

Further, the variance of the distribution of the dependent variable should be constant for

all values of the independent variable. Finally, the relationship between the dependent

variable and the independent variables should be linear, and all observations should be
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independent. In brief, the residuals of a good model should be normally and randomly

distributed.

In the event the response variable takes a form where the residuals look completely

different from a normal distribution, it is preferable to consider another class of models

known as generalized linear models (GLM); in which case the response variable Yi follows

an exponential family distribution. Logistic regression is an example of a GLM as we

define it, next.

4.1.5 Binomial Logistic regression

Binomial Logistic regression which is simply called a logistic regression estimates the

probability of an occurrence of an event Yi based on a set of predictors Xi. The basic

mathematical concept behind logistic regression is logit which is the natural logarithm

(ln) of an odds; and odds are ratios of probability “success” p (for instance, an ambulance

was needed) to probability “failure” 1−p (when no ambulance was needed, for instance).

Thus, given a response categorical variable Y and m predictors Xi, we have

logit(Y ) = log(
p

1− p
) = β0 +

m∑
i=1

βiXi (4.1)

where β0 is the Y intercept (i.e., mean of Y independent ofXi’s) and βi’s are the regression

coefficients (or parameter estimates) for each predictor Xi, for i = 1, . . . ,m.

We note that, by taking exponential (or antilog) of both sides of equation 4.1, we

derive the equation to predict the probability of the occurrence of an outcome of interest

as follows:

p = Probability (Y = outcome of interest | X1 = x1, X2 = x2, . . . , Xm = xm)

=
eβ0+

∑m
i=1 βiXi

1 + eβ0+
∑m
i=1 βiXi

,

where e ∼ 2.71828 is the natural base.

Interpretation :

(i) The sign (±) of a coefficient (or slope) βj gives the direction of the relationship
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(negative or positive) between the predictor Xj’s and the logit of Y .

(ii) The intercept or log average odd β0 = log( p
1−p) is an estimate of the model (null

model) if we consider no predictor; this is also known as unconditional log odds of the

response. Thus, the average odd is eβ0 and the average probability of success, p is

eβ0

1+eβ0
.

(iii) The coefficient βj, for some predictor Xj. Fixing the levels of the remaining

predictors Xk, k 6= j, this value gives the log(odds) of the effect of Xj on Y (beyond the

average) for each unit increase (in a scale variable) or in comparison to a fixed (base) level

in Xj. Thus, for a predictor Xj, the estimated odds value is eβj and the percentage

change in odds (per unit increase or relative to a base level) is

(eβj − 1)× 100%.

As related to inferential statistics, a null hypothesis would state that, for some βj = 0,

j > 0, i.e., there is no linear relationship between logit of Y and Xj, in the population.

So, rejecting such a null hypothesis would imply that a linear relationship exists between

logit of Y and Xj. As indicated earlier for linear regression, we will rely on the p-values

and the alpha level of .05, to help make our decision on the significance of the coefficients.

4.1.6 Multinomial Logistic regression

Multinomial logistic regression (or multinomial regression) is used to predict a nominal

dependent variable (with two or more factors or categories) given one or more indepen-

dent variables. As such, it is an extension of binomial logistic regression to allow for a

dependent variable with more than two categories.

4.1.7 R-squared

Also known as coefficient of determination. it is a statistical measure of how close the

data are to the fitted regression line. In other words, it is the percentage of the response
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variable variation that is explained by a linear model in which case

R2 =
Explained variation

Total variation
× 100

0% indicates that the model explains none of the variability of the response data

around its mean and 100% indicates that the model explains all the variability of the

response data around its mean. In general, the higher the R-squared, the better the

model fits your data but there are risks of “overfitting” or bias, which makes the model

less adaptable to a different data taken under a similar circumstance.

4.1.8 Pseudo R-squared

As opposed to an R-squared value that is obtain from evaluating a model built on a

continuous response, such an indicator does not make sense for models built on an ordinal

response where the variance is fixed instead. However, a similar metric (in scale) called

a “Pseudo” R-squared is used for models such as logistic regressions. In which case, the

higher the value the better model but they are only meaningful when comparing these

values for distinct models. There are several such pseudo R-squared values but SPSS

software returns the values for Nagelkerke, and Cox & Snell (Pseudo) R-squareds.

4.1.9 Confusion Matrix

In the area of machine learning when it comes to statistical classification we often rely

on a confusion matrix (or error matrix ) which gives the performance of a classifier or

supervised learning algorithm; neural network, which we define later, is an example of a

classifier. The confusion table or confusion matrix is a 2 matrix with the number of

true positives (TP; hit) and true negatives (TN; correct rejection) on row 1 and the

number of false positives (FP; false alarm or Type I error) and false negatives (FN;

miss or Type II error) on row 2, respectively by columns. The performance of a classifier

will be measured with the following statistics:
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4.1.10 Sensitivity

It is the measure of the proportion of actual positives (TP) that are correctly identified.

(e.g., the percentage of injured bikers who are correctly identified as being injured)

Thus, sensitivity or true positive rate (TPR) is given by

TPR =
TP

TP + FN
.

where

4.1.11 Specificity

It is the measure of the proportion of actual negatives that are correctly identified. (e.g.,

the percentage of bikers who suffered no accident related injury and who are correctly

identified as not injured).

Thus, specificity or true negative rate (TNR) is given by

TNR = 1− TPR =
TN

TN + FP
.

4.1.12 Receiver Operating Characteristic (ROC)

This is a plot of the diagnostic ability of the classifier system as we vary its discrimination

threshold (or cut-points). Thus, a curve is obtained as we plot the true positive rate

(TPR) against the false positive rate (FPR) at various cut points. In general, the closer

the curve is to the top left corner in the plane, the better the classification as shown in

Figure 4.1.
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Figure 4.1: An ROC curve space

In order to check the performance of our classifier, we will rely on the AUC (Area

Under Curve) of the ROC curve; this is a measure of discrimination or diagnostics. As

such, a higher AUC, the better the model at distinguishing between say, injured bikers

vs non-injured bikers, following an accident. Thus, an excellent classifier has AUC ∼ 1

while a poor classifier has AUC ∼ 0.

4.1.13 Neural Network

This is a sophisticated classifier that is applied to a data when the nature of the rela-

tionship between the predictors and the response is not clear; this relationship is learned

through repetitive “training” methods. For example, gradient methods such as gradient

descent (on a loss function) are used to train multilayer networks by updating weights

to minimize loss.

Following these definitions, we begin by answering some specific questions that are

related to the data using analytical methods in each upcoming sections.

4.2 Neural Network (Multilayer Perceptron)

Question n◦ 1. Does the data contain enough information to help predict the need

of an ambulance when a bicycle accident occurs?
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Procedure: Using Neural Network, we test the strength or the performance of any

classifier built on Ambulance against the predictors in the data.

4.2.1 Dependent: Ambulance

We include all variables as independent in the neural network algorithm except ambulance

(0=No, 1=Yes) which is used as dependent.

Figure 4.2: Neural Network Classification Output
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Figure 4.3: ROC curve for classification of ambulance requirement

Figure 4.4: AUC output for ambulance requirement

Conclusion: We found that the variables used in the data can predict the outcome

variable correctly 73% of the times. Both the training and testing data agree with this

prediction level as shown in Figure 4.2. This means that the performance level would

hold if applied to the larger population. Thus, we think that the data is sound, and it

is reasonable to consider a classification model on Ambulance against other predictors in
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the data.

4.2.2 Dependent: Bike Injuries

Question n◦ 2. Does the data contain enough information to help predict the different

(5) levels of injuries when a bicycle accident occurs?

Procedure: Similarly, using Neural Network, we test the performance of any clas-

sifier that is built on Injury against any other predictor in the data. We observe two

separate results, depending on the number of levels of injuries.

i. Five classes

From the Neural Network output, most levels of injuries cannot be classified. In which

case the percent of prediction is below 50% for both training and testing data as shown

in Figures 4.5
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Figure 4.5: Neural Network Classification Output for five injury levels

36



Figure 4.6: ROC curve for classification of five injury levels

Figure 4.7: AUC output for five injury levels

Conclusion: Given the performance of the model, we can think that either the data

does not have sufficient predictors or would need more observations in order to be robust

enough for such an analysis.
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For this reason, we decided to recode the variable Injury level, down from five classes

to three classes as shown in Figure 4.8.

ii. Three classes

Figure 4.8: Injury levels recoded

With the newly recoded variable, the Neural Network output indicates an overall

83% predictive strength of the three injury levels, consistently for both training and

testing data, as shown in Figure 4.9. However, as injury or possible injury occurrences

are predictable 100% of the time, other levels such as no injury or death are highly

unpredictable; this does not come as a surprise since these events are heavily influenced

by many other factors, perhaps not recorded or accounted for.

Figure 4.9: Neural Network Classification Output for three injury levels
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Figure 4.10: ROC curve for classification of three injury levels

Figure 4.11: AUC output for three injury levels

Conclusion: Given the overall predictive power (83%) of the classifier relative to the

(3) Injury levels, we consider the data sound for analysis.

For each of the previous questions, the response variable is nominal, it makes sense

to use binary and multinomial logistic regressions.
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4.3 Logistic Regressions

Question n◦ 3. Do bikers’ injury levels help predict the use of ambulance when accidents

occur?

4.3.1 Ambulance vs Injury levels

The first model in the output (Figure 4.12) is a null model, that is, a model with no

predictors.

Figure 4.12: Logistic Regression on Ambulance - Null Model

Figure 4.13 gives the overall test for the model that includes the predictors which are

significant with a p-value ∼ 0.000. This means our model as a whole fits significantly

better than the null model. The logistic regression coefficients give the change in the

log odds of the outcome Ambulance for biker’s injury levels 1 and 2 compared to biker’s

injury level 3.

Figure 4.13: Logistic Regression on Ambulance - Variables Output

Figure 4.14: Logistic Regression on Ambulance - Model Performance Summary
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Model Equation:.

ln(y) = 2.7− 4.02x1 − 1.8x2

where y :=Predicted odds of Ambulance

x1:=Injury-level1(No Injury)

x2:= Injury-level2(Possible or Evident Injury)

Interpretations:

Having been involved in a bicycle’s accident, the odds of getting an ambulance with

a level 2 injury compared to injury level 3 decreases by (1− .2)× 100% = 80% while the

odds of getting an ambulance with a level 1 injury decreases by (1− .02)× 100% = 98%

compared to injury level 3.

Conclusion:

Because the odds of getting an ambulance increase significantly as the level of injury

increases, we conclude that there is a linear relationship between Ambulance use and

level of injuries.

Further, it is reasonable to assume that Ambulance is very related to some level of

injury, for the remaining analysis, we use Injury levels as our response variable and drop

Ambulance from the model.

4.3.2 Injury levels vs Traffic Controls

Question n◦ 4. Does the presence of some traffic control (or the lack thereof) help

explain the (3) levels of injuries of the bikers?

With this question, we seek to understand the effect of traffic control on the levels of

injuries as we disregard other factors.

This is a multinomial logistic regression table that details a likelihood ratio test with

traffic control presence of a bicycle accident (Figure 4.15), which indicates statistical

significance.
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Figure 4.15: Multinomial Logistic Regression on Traffic Control-Likihood Ratio

Figure 4.16: Multinomial Logistic Regression on Traffic Control-Pseudo R2

Figure 4.17: Multinomial Logistic Regression on Traffic Control-Variable Output

Model Equation:

ln(y1) = .3 + .11x1

ln(y2) = 2.55− .15x1

where,

y1 :=Predicted odds of Level 1 injury

y2 :=Predicted odds of Level 2 injury

x1=Injury-level1

x2= Injury-level2

Interpretations:
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An odds ratio > 1 indicates that the risk of the outcome falling in the comparison

group relative to the risk of the outcome falling in the referent group increases as the

variable increases. In other words, the comparison outcome is more likely. An odds ratio

< 1 indicates that the risk of the outcome falling in the comparison group relative to

the risk of the outcome falling in the referent group decreases as the variable increases.

In general, if the odds ratio < 1, the outcome is more likely to be in the referent group.

Given the other variables in the model are held constant with bicycle accidents, the odds

of the incidents with no injury occurring at intersections without traffic controls increases

by .110 relative to level 3 injuries. In other words, level 1 injury compared to injury level

3 increases by (1.11 − 1) × 100% = 11% while the odds of a level 2 injury decreases by

(1 − .86) × 100% = 14% compared to injury level 3 when there are no traffic controls

present. Restated, the odds of bicycle injury where traffic controls exist suggest both

an increase and a decreases, and that some other factors or covariates affect the level of

injuries. Because the p-value> .05 for each variable in the model, we fail to reject the

the null hypothesis at a 5% level of risk.

Conclusion:

There is no linear relationship between being injured (or not) and traffic control at

a standard 5% level of risk. However, there may be some relationship between traffic

control and the level of severity of an injury, especially when other factors are consider.

This is why we considered the next analysis.

4.3.3 Injury levels vs Other factors

With regard for the other factors, this is a multinomial logistic regression which considers

all other factors for the model built on (3) Injury levels. Neither number of lanes, gender,

race and age of bicyclists and driver, road conditions, substance involvement, weather

conditions, work zone, were statistically significant at explaining the different levels of

injuries for bicyclists who crashed with a motor vehicle. Figure 4.18 is a list of the

factors that are significant in our model. (See Appendix 5.2 for the full list of factors and

estimates).
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Figure 4.18: Multinomial Logistic Regression on Traffic Control-Variable Output

Question n◦ 5. What factors help explain the levels of injuries of the bikers?

Following from Figure 4.18, we have obtained the following.

Model Equation:

ln(y1) = −4 + .27x1 + .21x2 + .14x3 − .5x4 − .52x5 + .24x6

ln(y2) = .11− .22x1 + .17x2 + .15x3 − .48x4 − .48x5 − .03x6

where,

y1 :=Predicted odds of Level 1 injury (No injury)

y2 :=Predicted odds of Level 2 injury (Possible or Evident Injury)
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x1= Biker’s Age

x2= Driver’s Estimated Speed

x3= Average Speed Limit

x4= Lighting Conditions

x5= Road Characteristics

x6= Traffic Controls

Interpretations:

The odds of being injury level 1 vs injury level 3 decreases by 27% as the age of the

biker increases.

The odds of being injury level 2 vs injury level 3 decreases by 22% as the age of the

biker increases.

The odds of injury level 1 vs injury level 3 increases by 21% for each 1 unit increase

in driver’s estimated speed.

The odds of being injury level 2 vs injury level 3 increases by 17% for each 1 unit

increase in driver’s estimated speed.

The odds of injury level 1 vs injury level 3 increases by 14% for each 1 unit increase

in average speed limit.

The odds of being injury level 2 vs injury level 3 increases by 15% for each 1 unit

increase in average speed limit.

The odds of being injury level 1 vs injury level 3 decreases by 50% when changing

from having lighting to having no lighting.

The odds of being injury level 2 vs injury level 3 decreases by 48% when changing

from having lighting to having no lighting.

The odds of being injury level 1 vs injury level 3 decreases by 52% when changing

from a straight to a road with curves.

The odds of being injury level 2 vs injury level 3 decreases by 48% when changing

from a straight to a road with curves.

Lastly, the odds of the incidents with no injury occurring at intersections without

traffic controls increases by 28% relative to level 3 injuries while the odds of a level 2

injury decreases by (1− .97)× 100% = 3% compared to injury level 3 when there are no
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traffic controls present.

Conclusion: The average posted speed limit shows that incidents occur when the aver-

age speed of 32.5 accounts for 45% of the accidents total. Lighting conditions and injury

severity of BMVC have a negative correlation injury even though more incidents occur

during the day. Driver’s wariness and prudence are plausible justifications where there is

low to no light source present. This may also be the case where there is a straight road

versus a curve road involved.
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Chapter 5 Conclusion and Recommendations

This thesis was inspired by a recent work by Estime [4] as she studied factors that

influence bicyclists injury severity levels at unsignalized intersections in North Carolina.

In her results, based on 1273 observations, Estime found that light conditions, age (55 or

older), driver’s speed, road features, type of day and time of year are factors. We explore

the bicyclists’ injuries, we found a relationship between ambulance being properly used

or sent with the level of severity of the injury. We fix the data which helps to increase

the total observations to 8418. This significant increase in the sample size had allowed

us to run a neural network algorithm on the data to access its predictive strength. With

5 levels of injuries, the data is not suitable for prediction, but with 3 levels of injuries, we

found an overall predictive power of 83% accuracy, given the variables in the data. With

this information, we were able to address some analysis questions as outlined in Chapter

1, Section 1.1. From these questions, we found that the odds of getting an ambulance

increase with the levels of injuries. So, we decided not to keep Ambulance in any model

built on levels of injuries. Traffic control alone was not significant at predicting when

an accident will result in an injury or not. Thus, it became obvious that other factors

were involved in predicting the levels of injuries. We found Biker’s Age, Speed Limit,

Driver’s Estimated Speed, Light Condition (daylight compared to no daylight), and Road

Characteristics (straight compared to curve) are significant factors at explaining the levels

of injuries. As with Estime’s analysis biker’s age and lighting are contributing factors;

however, road features (intersections, etc..), time of the year play no role. It is clear from

our final analysis that drivers ought to slow down, drive within the speed limit, especially

on curved roads. These preventive measures will likely reduce the level of severity of the

accidents and possibly save lives.
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Appendix

Figure 5.1: Original Variables with Original Type
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Ambulance vs. Cor-
relation

P-
value Written Results

Bike Injury .34 .000

There is a significant positive
relationship between ambulanceR
and Bike Injury,
r(8186)=.34, p = .000

Biker’s Age .046 .000

There is a significant positive
relationship between ambulanceR
and Biker’s Age,
r(8186)=.046, p = .000

Crash Severity .361 .000
There is a significant positive relationship
between ambulanceR and Crash Severity,
r(8186)=.34, p = .000

Driver’s Age -.019 .076
There is a weak negative relationship
between ambulanceR and Driver’s Age
r(8416)=-.019, p = .076

Driver’s Estimated
Speed -.111 .000

There is a significant negative
relationship between ambulanceR
and Driver’s Estimated Speed,
r(8416)=-.111, p = .000

Hit and Run .081 .000
There is a some positive relationship
between ambulanceR and Bike Hit and Run
r(8416)=..081, p = .000

Lighting Conditions -.061 .000
There is a weak negative relationship
between ambulanceR and Lighting conditions
r(8416)=-.061, p = .000

Number of Lanes .004 .691
There is no relationship between
ambulanceR and the Number of Lanes
r(8416)=.004, p = .691

Road Characteristics -.023 .037
There is a weak negative relationship
between ambulanceR and Road Characteristics,
r(8370)=.34, p = .000

Road Conditions -.044 .000
There is a weak negative relationship
between ambulanceR and Road Conditions,
r(8416)=-.044, p = .000

Substance
Involvement -.018 .105

There is no significant relationship
between ambulanceR and Substance
Involvement,
r(8416)=-0.018, p = .105

Speed Limit -.017 .113
There is a significant positive relationship
between ambulanceR and Speed Limit,
r(8416)=-.017, p = .113

Traffic Control
Present .008 .491

There is no relationship
between ambulanceR and Traffic
Control Presence,
r(8263)=.008, p = .491

Weather -.020 .068
There is no significance
between ambulanceR and Weather,
r(8416)=-.020, p = .068

Workzone -015 .171
There is a significant positive relationship
between ambulanceR and Workzone,
r(8416)=-.015, p = .171
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Figure 5.2: Multinomial Logistic Regression on Other Factors - Variable Output
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